Optimizing Rank-based Metrics via Blackbox Differentiation


As another continuation of the blackbox differentiation line of work, we show that we can cast the ranking problem as a blackbox solver that satisfies the conditions for efficient gradient calculation, therefore enabling us to optimize rank-based metrics by simply using efficient implementations of sorting algorithms instead of learning a differentiable sort operation. We apply this insight to optimizing mean average precision and recall in object detection and retrieval tasks, where we achieve comparable results to state-of-the-art at the time.